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1. Understanding the Basics 

1.1. Software Description 

 
HPGL is a C++ / Python library that implements geostatistical algorithms. The 

algorithms are implemented via scripts in the Python language, thus enabling 
creation of the required geostatistical modeling scenarios. 

 
Version 0.9.9 BSD implements the following algorithms: 

 

 Simple Kriging (SK) 

 Ordinary Kriging (OK) 
 Indicator Kriging (IK) 

 Local Varying Mean Kriging (LVM Kriging) 

 Simple CoKriging (Markov Models 1 & 2) 
 

 Sequential Indicator Simulation (SIS) 
 Correlogram Local Varying Mean SIS (CLVM SIS) 

 Local Varying Mean SIS (LVM SIS) 
 

 Sequential Gaussian Simulation (SGS) 

 Local Varying Mean SGS (LVM SGS) 
 

 Truncated Gaussian Simulation (GTSIM)* 
  * in the Python script collection 

 
The attributes are set across an ijk space, meaning that all parameters (e.g. 

variogram or ellipsoid radiuses) are set in grid cells.  
Kriging algorithms supports parallel processing, see 2.7 to learn how to set up 

the number of threads. 
 
The following data import/export formats are currently supported: 
 - Eclipse Property text file; 
 - GSLIB property text file. 
 

 HPGL properties are stored as NumPy Arrays (see 2.3 for details). 
 
 
 
 



 

1.2. System Requirements and Installation 

 
Using HPGL requires a Windows (32-bit) or Linux (32/64-bit) operating system 

with installed Python version 2.5 or higher, as well as NumPy/SciPy python packages 
installed (for the corresponding Python version). 

1.2.1. Microsoft Windows 

MS Windows installation requires the presence of Microsoft Visual C++ 2005 
SP1 Redistributable Package (it can be downloaded from 
http://www.microsoft.com/downloads/details.aspx?familyid=2051A0C1-

C9B5-4B0A-A8F5-770A549FD78C&displaylang=en). 
WARNING! The Redistributable Package must be of revision date 7/28/2009 

or later (after the ATL security update). 
HPGL installation is performed by running the file 

HPGL-X.Y.Z-BSD-[py2.5/py2.6].win32.exe (for the corresponding Python 
version). 

 

1.2.2. Ubuntu/Debian Linux (.deb-based) 

Install package hpgl_X.Y.Z-BSD-[x32/x64].deb (corresponding to the 
operation system’s architecture). Using HPGL also requires the Boost Libraries to be 
installed. 

 

1.2.3. Other Systems 

So far HPGL has binary packages only for Ubuntu Linux and Windows. 
However, if you want to compile the project under another Linux system (or to 
create a package), feel free to contact the authors. 

 

1.3. Components Used 

 TNT (Template Numerical Toolkit) – (can be downloaded from 
http://math.nist.gov/tnt/overview.html); 

 Boost Libraries (i.e. boost::python). 
 

  

http://www.microsoft.com/downloads/details.aspx?familyid=2051A0C1-C9B5-4B0A-A8F5-770A549FD78C&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=2051A0C1-C9B5-4B0A-A8F5-770A549FD78C&displaylang=en
http://math.nist.gov/tnt/overview.html


 

2. Core Features 

2.1. Library Import 

Every HPGL Python script must be started with the import geo_bsd module 
command: 
 

from geo_bsd import * 

 

HPGL also includes two sub-modules geo_bsd.routines with additional 
property-related algorithms: VPC (Vertical Proportion Curve) and moving average 
calculations, GSLIB file format support etc., and geo_bsd.cvariogram for sample 
variogram calculation. 

If you want to use these sub-modules, the Python script must be started with: 
 

from geo_bsd.routines import * 

from geo_bsd.cvariogram import * 

 
For detailed information about sub-modules, see Ch. 4. 

 

2.2. Creating an IJK Grid 

Every HPGL geostatistical algorithm requires a Cartesian Grid object. An IJK 
(Cartesian) grid can be created with the SugarboxGrid() function: 

 

grid_object = SugarboxGrid(I, J, K) 
 

This command will create a grid object of dimensions i, j, k. 
 
Example: 

 

my_griddy = SugarboxGrid(42, 42, 10) 
 

2.3. Properties 

All HPGL properties must be objects of the two classes: ContProperty (for 
continuous data) or IndProperty (for categorical data).  

  
a) Continuous property: 
 

cont_property = ContProperty(array_prop, array_mask) 

 
where 
- array_prop is a 3D NumPy-array (float32 type) with property data; 



 

- array_mask is a 3D NumPy-array (uint8 type), which defines 
array_prop points with a value (array_informed = 1), and array_prop 
points without value (array_informed = 0). 

 
b) Categorical property: 
 

ind_property = IndProperty(array_prop, array_mask, 

indicators_number) 

 
where  
- array_prop is a 3D NumPy-array (uint8 type) with categorical property 

data. Categorical indicators must be named from 0 up to max (0,1,2,3…); 
- array_mask is a 3D NumPy-array (uint8 type), which defines array_prop 

points with a value (array_informed = 1), and array_prop points without 
value (array_informed = 0). 

- indicators_number is the number of categorical indicators in 
array_prop. 

 
Note: 2D or 1D properties must be created as 3D ones: 

 

a = zeros((10,10, 1)) # 2D 10x10 property  

a = zeros((10, 1, 1)) # 1D 10 property 

 
WARNING! NumPy arrays must use the FORTRAN data storage order. This can 

be achieved with the following: 
 
- creating a new array: 
 

a = array([], order=’F’) 

 

- changing an existing non-Fortran order array:  
 

a = require(a, requirements=’F’) 
 
If an HPGL input array will be non-FORTRAN, it will be converted to the 

FORTRAN type automatically; you need to keep in mind that all resulted properties 
will be returned as FORTRAN order arrays. 

More information about FORTRAN order arrays can be addressed here: 
http://www.ibiblio.org/pub/languages/fortran/ch2-6.html. 

 

2.4. Eclipse Property File Format 

HPGL supports reading from and writing to Eclipse property files. 

http://www.ibiblio.org/pub/languages/fortran/ch2-6.html


 

Eclipse property files must be in the following format: 
 

-- comment (will be ignored) 

 

PROPERTY_NAME 

0 

1 

0 

... 

/ 

 

Values will be read in the order defined in the file. 

2.4.1. Reading Eclipse Property files  

Reading properties from Eclipse property text files is implemented in two 
functions: 

 

 load_ind_property() – for indicator values; 
 load_cont_property() – for continuous values. 

 
prop = load_cont_property(filename, undefined_value, size) 

 

prop = load_ind_property(filename, undefined_value, 

[indicators], size) 
 

These commands will create an object (prop) of the corresponding class 
(ContProperty or IndProperty) that will contain a property from the file 
filename. Cells with values equal to undefined_value will be considered empty 
(undefined), and array_informed for these cells will be set to 0. 

Direct access to data and mask NumPy arrays can be achieved by indexing the 
property object: prop[0] will be a pointer to the data array, and prop[1] will be a 
pointer to the mask array. 

The [indicators] argument in the load_ind_property function is a 
Python tuple with indicator codes contained in the file. 

The last argument (size) is a Python tuple with the grid size in cells i,j,k: 
 

size = (i,j,k) 

  
WARNING! After importing data from the file, the indicators will be 

renumbered to 0,1,2… like in indicators. 
 

Example: 

 
size = (50, 50, 100) 

cont_property = load_cont_property("d:\CONT.INC", -99, size) 



 

ind_property = load_ind_property("d:\IND.INC", -99, [0,1], size) 
 

2.4.2. Writing Eclipse Property Files 

Properties can be written to an Eclipse property file using the 
write_property() function: 
 

write_property(prop_object, filename, prop_name, undefined_value, 

indicator_values=[]) 

 

This command will create a text file with name filename, which will contain 
the property prop_name extracted from the object prop_object. Empty cells (if 
any) will be written as undefined_value. For indicator properties, the indicator 
values are defined in indicator_values. If indicator_values is not defined, the 
indicators in the saved property will be 0,1,2,… 

 
Example: 

 
write_property(cont_prop, "CON_PROP.INC", "PROPCON", -99) 

write_property(i_prop, "INDP.INC", "PROP_IND", -99, [0,1]) 
 

 

2.5. GSLIB Files 

A detailed description of the GSLIB file format can be found at 
http://www.gslib.com/gslib_help/format.html. All GSLIB-related functions are 
included in the geo_bsd.routines sub-module, so you need to import it before 
using GSLIB files: 

 
from geo_bsd.routines import * 

 

2.5.1. Reading from GSLIB Files 

Reading properties from a GSLIB file is implemented in the LoadGslibFile() 
function: 
 

dict_gslib = LoadGslibFile(filename) 

 
where dict_gslib is a Python dictionary with data from file filename (the 
dictionary items will be NumPy-array properties from the file). 
 
A property with the name property_1 can be accessed using the following 

syntax: 
 

dict_gslib[“property_1”] 

http://www.gslib.com/gslib_help/format.html


 

 

2.5.2. Writing to GSLIB Files 

An HPGL property can be written into a GSLIB file by the SaveGSLIBCubes() 
function: 
 

SaveGSLIBCubes(dict_gslib, filename, caption, Format = "%d") 

 

where filename is the GSLIB file name; 
dict_gslib is the Python dictionary with the properties in the form of 
NumPy-arrays; 
caption is the caption of the GSLIB file. 
 
A detailed description of Python dictionaries can be found in Python 

documentation, for example, here:  
http://docs.python.org/tutorial/datastructures.html#dictionaries 

 

2.5.3. Writing to GSLIB Files (С++) 

There is another GSLIB property write function called   
write_gslib_property() present in HPGL. The parameters of this function are 
identical to those of the write_property()function for Eclipse property files: 

 
write_gslib_property(prop_object, filename, prop_name, 

undefined_value, indicator_values=[]) 
 

This command will create a file named filename which will contain the 
property named prop_name extracted from the object prop_object. Empty cells (if 
any) will be written as undefined_value. For indicator property, indicator values 
are defined by indicator_values. If indicator_values is not defined, the 
indicators in the saved property will be written as 0,1,2,… 

This function is much faster than SaveGSLIBCubes(), but it can be used to 
store only one property at a time. Multiple properties defined as dictionaries can be 
stored using the SaveGSLIBCubes() function. 

 
Example: 

 

write_gslib_property(cont_prop, "CON_PROP.INC", "PROPCON", -99) 

write_gslib_property(i_prop, "INDP.INC", "PROP_IND", -99, [0,1]) 

 

http://docs.python.org/tutorial/datastructures.html%23dictionaries


 

2.6. Covariance (Variogram) Object 

All HPGL geostatistical algorithms use a unified type of the covariance 
(variogram) function. A covariance (variogram) object must be created as 
CovarianceModel: 
 

cov = CovarianceModel( 

 type = 0, 

 ranges=(0,0,0), 

 angles=(0,0,0), 

 sill=1.0, 

 nugget=0.0) 

 

where  
type is the variogram type: 

0 – spherical, 1 – exponential, 2 – Gaussian; 
ranges are the variogram ellipsoid ranges (0⁰, 90⁰, vertical); 
angles are the variogram ellipsoid angles; 
sill is the sill value of the variogram; 
nugget is the nugget-effect value. 
 
Covariance model objects can be used in all HPGL geostatistical algorithms. 

2.7. Threading Parallel Algorithms 

The number of threads for parallel algorithms (so far, only for Kriging) can be 
set/modified with the set_thread_num() function: 

 
set_thread_num(th_num) 

 

where th_num is the number of threads to be allocated. 
 
Note: A ‘rule of thumb’ for threading is to set the number corresponding to 

the number of CPUs (or cores) operating on the system. 
 
To get the current number of threads, calle the function get_thread_num: 
 

current_th_num = get_thread_num() 

2.8. Releasing Data from Memory 

When a property is no longer needed, it should be deleted to free system 
memory. This is done by the del() command defined as 

 
del(prop_object) 

 

  



 

3. Using the Algorithms 

3.1. Simple Kriging 

Simple Kriging is implemented in the function simple_kriging(): 

def simple_kriging( 

 prop,    # property with initial values (hard data) 

 grid,    # the grid in which SK is performed 

 radiuses,   # search ellipsoid radiuses  

 max_neighbours,  # maximum interpolation points  

 cov_model,   # covariance (variogram) object (see 2.6)  

mean=None  # mean value 

     # if None, it will be calculated automatically   

     # from the initial data 

) 

Example: 

 

size = (55, 52, 100) 

grid = SugarboxGrid(55, 52, 100) 

prop = load_cont_property("HARD_DATA.INC", -99, size ) 

cov_krig = CovarianceModel(type=1, ranges=(10,10,10), sill=1) 

 

prop_result = simple_kriging(prop, grid, 

  radiuses = (20, 20, 20), 

  max_neighbours = 12, 

  cov_model = cov_krig, 

  mean = 1.6) 

  

write_property(prop_result, "SK.INC", "SK_RESULT", -99) 

del(prop_result) 

 

3.2. Ordinary Kriging 

Ordinary Kriging is implemented in the function ordinary_kriging: 

def ordinary_kriging( 

 prop,    # property with initial values (hard data) 

 grid,   # the grid in which OK is performed 

 radiuses,   # search ellipsoid radiuses 

 max_neighbours,  # maximum interpolation points  

 cov_model,   # covariance (variogram) object (see 2.6)  

) 



 

 
Example: 

 

size = (55, 52, 100) 

grid = SugarboxGrid(55, 52, 100) 

prop = load_cont_property("HARD_DATA.INC", -99, size ) 

cov_krig = CovarianceModel(type=1, ranges=(10,10,10), sill=1) 

 

prop_result = ordinary_kriging(prop, grid, 

 radiuses = (20, 20, 20), 

 max_neighbours = 12, 

 cov_model = cov_krig) 

 

write_property(prop_result, "R_OK.INC", "OK_RESULT", -99) 

del(prop_result) 
 

 

3.3. Indicator Kriging 

Before calling the indicator_kriging function, a list of parameters must be 
created as shown below: 

 
data =  [  
   

  # Variogram parameters for 0 indicator: 
 

 {  
  “cov_model”: cov0   # covariance (variogram) object (see 2.6)  

   "radiuses": (SR1, SR2, SR3),   # search ellipsoid radiuses 
 

    "max_neighbours": neigh_count, # maximum interpolation points  
 }, 

 
  # Variogram parameters for 1 indicator: 
 
 { 
  “cov_model”: cov1   # covariance (variogram) object (see 2.6)  

   "radiuses": (SR1, SR2, SR3),   # search ellipsoid radiuses 
 

    "max_neighbours": neigh_count, # maximum interpolation points  
 } 
] 
 

A variogram is required for each indicator variable. 
 
Please notice: If only two indicators are used, Median IK will be performed. 
  



 

The parameters in the structure being assigned, indicator_kriging can 
now be called as follows: 

 
def indicator_kriging 
( 

ik_prop,  # algorithm parameters structure 
 
grid,   # the grid on which Indicator Kriging is performed 

 
data,   # property with initial values (hard data) 

 
  marginal_probs # Python tuple with marginal probabilities for each indicator 

) 

 
Example: 

 
size = (55, 52, 100) 

grid = SugarboxGrid(55, 52, 100) 

prop = load_ind_property("HARDDATA.INC", -99, [0,1], size) 

 

cov1 = CovarianceModel(type=1, ranges=(10,10,10), sill=1) 

 

data =  [ { 

   "cov_model": cov1,  

   "radiuses": (20, 20, 20), 

   "max_neighbours": 12, 

  }, 

  { 

   "cov_model": cov1,  

   "radiuses": (20, 20, 20), 

   "max_neighbours": 12, 

  }] 

 

ik_result = indicator_kriging(prop, grid, data, (0.8, 0.2)) 

write_property(ik_result, "RESIK.INC", "PROP_IK", -99, [0,1]) 

 

 

3.4. LVM Kriging (Local Varying Mean) 

 Kriging with Local Varying Means (LVM) is implemented in the function 
lvm_kriging: 
 

def lvm_kriging 

( 

 prop,    # initial property values (hard data) 
 

 grid,   # the grid in which lvm kriging is performed 



 

 mean_data,  # property with LVM values (must be float32 NumPy array) 

 radiuses,   # search ellipsoid radiuses 

 max_neighbours,  # maximum interpolation points  

 cov_model   # covariance (variogram) object (see 2.6)  

) 

 
Example: 

 

grid = SugarboxGrid(55, 52, 100) 

size = (55, 52, 100) 

mean_data = load_cont_property("cube_local_means.inc", size)[0]

  

cov1 = CovarianceModel(type=1, ranges=(10,10,10), sill=1) 

 

lvm_prop = load_cont_property("LVM.INC", -99, size) 

 

prop_lvm = lvm_kriging(lvm_prop, grid, mean_data, 

  radiuses = (20, 20, 20), 

  max_neighbours = 12, 

  cov_model = cov1) 

  

write_property(prop_lvm, "lvmresult.inc", "lvm_kriging", -99) 

 

del(mean_data) 

del(prop_lvm) 

 

3.5. Sequential Indicator Simulation (SIS) 

The SIS parameters structure is identical to Indicator Kriging described above. 

The algorithm is executed by the sis_simulation function: 

def sis_simulation( 

prop,    # initial property data (hard data) 
 
grid,    # grid on which SIS is performed 
 
data,    # algorithm parameters structure 
 
seed,   # random seed (a stochastic realization number) 

 

marginal_probs, # if Python tuple with marginal probabilities 
# for each indicator, SIS will be performed; 

# if Python tuple with NumPy-arrays (probabilities cubes) 
 # SIS LVM will be performed.  

use_correlogram = True, 



 

   # Type of LVM SIS (only if mean data defined as 
# probabilities cubes) 

   # True — use Correlogram SIS 
   # False — use Classic LVM SIS 

 
mask = None, # modeling region - 

# in case not all points need to be simulated 
 

# mask must be an uint8 NumPy array with 
# 1 (ones) for points to be simulated, and 0 (zeros)  

# for the ones to leave out 
 

# if mask = None, all points will be simulated 
) 

 
Please notice: If only two indicators are used, Median SIS will be performed. 
 
 
Example: 

 
size = (55, 52, 100) 

grid = SugarboxGrid(55, 52, 100) 

sis_prop = load_ind_property("HARD.INC", -99, [0,1], size) 

 

cov1 = CovarianceModel(type=1, ranges=(10,10,10), sill=1) 

 

 

sis_data =  [ { 

   "cov_model": cov1,  

   "radiuses": (20, 20, 20), 

   "max_neighbours": 12, 

  }, 

  { 

   "cov_model": cov1,  

   "radiuses": (20, 20, 20), 

   "max_neighbours": 12, 

  }] 

 

sis_result = sis_simulation(sis_prop, grid, sis_data, 

seed=3241347) 

 

write_property(sis_result, "RESSIS.INC", "P_SIS", -99, [0,1]) 

 

 

3.6. Sequential Gaussian Simulation (SGS)  

SGS is implemented in the function sgs_simulation: 
 



 

def sgs_simulation( 

 prop,    # initial property data (hard data) 

grid,    # grid on which SGS is performed 
 
 radiuses,   # search ellipsoid radiuses  

 

 max_neighbours,  # maximum interpolation points  

 

 cov_model,   # covariance (variogram) object (see 2.6)  

seed,   # random seed (a stochastic realization number)  
 

kriging_type = “sk”, # Kriging type 
    # sk – Simple Kriging 
    # ok – Ordinary Kriging 
    # ignored for SGS LVM 
 

mean = None,  # modeling property mean value 
    # if number, SGS will be performed 

# if float32 NumPy array – SGS LVM will be performed 
 

use_harddata = True, 
# if False, initial property data will be ignored, and unconditional  
# SGS with histogram from cdf_data will be performed 

 
cdf_data = None, 

  # CdfData class object, which defines CDF used for modeling 

  # can be created:  

# 1. by calc_cdf(prop), function, where prop is a NumPy-ndarray 

# 2. as CdfData(values, probs), where values are property cdf values  

# and probs are the corresponding cumulative probabilities 

 
mask = None, # modeling region - 

# in case not all points need to be simulated 
 

# mask must be an uint8 NumPy array with 
# 1 (ones) for points to be simulated, and 0 (zeros)  

# for the ones to leave out 
 

# if mask = None, all points will be simulated 
) 

 
Example: 

 

size = (55, 52, 100) 

grid = SugarboxGrid(55, 52, 100) 

prop = load_cont_property("SGS_HARD_DATA.INC", -99, size) 



 

 

cov1 = CovarianceModel(type=1, ranges=(10,10,10), sill=1) 

  

sgs_result = sgs_simulation(prop, grid, 

 radiuses = (20,20,20),  

 max_neighbours = 12,  

 cov_model = cov1,  

 seed=3439275) 

 

write_property(sgs_result, "RSGS.INC", "PROP_SGS", -99) 
 

Example(LVM): 

 
grid = SugarboxGrid(55, 52, 100) 

size = (55, 52, 100) 

 

prop = load_cont_property("HARD_DATA.INC", -99, size ) 

mean_data = load_cont_property("MEAN.INC", -99, size )[0] 

 

sgs_lvm_result = sgs_result = sgs_simulation(prop, grid, 

 radiuses = (20,20,20),  

 max_neighbours = 12,  

 cov_model = cov1,  

 seed=3439275, 

 mean = mean_data) 

 

write_property(sgs_lvm, "SGS_LVM_RESULT.INC", "SGS_LVM", -99) 

 

del(sgs_lvm) 

  

  



 

4. Sub-Modules 

 4.1. geo_bsd.routines 

The geo_bsd.routines sub-module has many additional functions to work 
with HPGL properties. 

4.1.1. Mean calculation 

a) CalcMean – returns the mean value for the NumPy-array Cube calculated 
on the defined (Mask = 1) cells: 

 

mean = CalcMean(Cube, Mask) 

 
b) CalcMarginalProbsIndicator – returns a NumPy-array with 

proportions (marginal probabilities) of indicators in the array Cube, for 
each indicator in Indicators, calculated on the defined (Mask = 1) cells: 
 

MProbs = CalcMarginalProbsIndicator(Cube, Mask, Indicators) 

 

4.1.2. VPC (Vertical Proportion Curve) Calculation 

 

a) CalcVPC – returns a NumPy-array with VPC (Vertical Proportion Curve) – 
mean values of vertical slices for the NumPy-array Cube, calculated on the 
defined (Mask = 1) cells: 

 

VPC = CalcVPC(Cube, Mask, MarginalMean) 

 
MarginalMean must be the mean value for the property defined in 

Cube. This value will be set in VPC for slices without defined (Mask = 1) cells. 
 

b) CalcVPCsIndicator – returns a Python list with NumPy-arrays VPC 
(Vertical Proportion Curve) – means of vertical slices for the NumPy-array 
Cube for each indicator defined in Indicators, calculated on the defined 
(Mask = 1) cells: 

 

Result = CalcVPCsIndicator(Cube, Mask, Indicators, 

MarginalProbs) 

 
MarginalProbs must be the means (marginal probabilities) for each of 

the indicators. These values will be set in VPC for slices without defined (Mask 
= 1) cells. 

 

с) CubeFromVPC – creates a 3D NumPy-array of shape NX, NY, len(VPC), 
filled with VPС values for each of the vertical slices. 



 

 

VPC_Cube = CubeFromVPC(VPC, NX, NY) 

 
VPC_Cube array can be used as mean data for continuous Local Varying Mean 
algorithms (SGS LVM, LVM Kriging). This function must be used in couple with 
CalcVPC. 
 
d) CubesFromVPCs – creates a Python list with 3D NumPy-arrays shaped as 

NX, NY, len(VPC), filled with mean values for each of the vertical slices. 
 

VPC_Cubes = CubesFromVPCs(VPCs, NX, NY) 

 
VPC_Cubes can be used as mean data for indicator algorithms with Local 
Varying Mean (SIS LVM). This function must be used in couple with 
CalcVPCsIndicator. 
 

4.1.3. GSLIB File Routines 

The file reading and writing functions from this sub-module are described in 
2.5. Some additional functions which may come in useful to work with GSLIB 
files are described below.  
 
a) Cubes2PointSet – converts a dictionary with GSLIB properties into the 

GSLIB PointSet format: 
 

PointSets = Cubes2PointSet(CubesDictionary, Mask) 
 
where: 
- CubesDictionary is the dictionary with GSLIB properties; 
- Mask defined (Mask = 1) / undefined (Mask = 0) is the cell mask array. 
 

b) Cube2PointSet – converts defined (Mask = 1) cells of the NumPy-array 
Cube into a GSLIB PointSet: 

 
PointSet = Cube2PointSet(Cube, Mask) 

 
с) PointSet2Cube – converts a GSLIB PointSet into an HPGL property: 

 
Cube, Mask = PointSet2Cube(X, Y, Z, Property, Cube) 

 
where: 
- Cube is the NumPy-array for converted points; 



 

- Mask is the NumPy-array which defines the defined (Mask = 1) and  
undefined (Mask = 0) cells for Cube; 
- X are the X-coordinates for the PointSet’s points; 
- Y are the Y-coordinates for the PointSet’s points; 
- Z are the Z-coordinates for the PointSet’s points; 
- Property is the NumPy-array with the PointSet property values. 

 
Note: Cube must be initialized with the corresponding shape. After execution, 

it will be filled with Point Set values. 
 
d) SaveGSLIBPointSet – saves a GSLIB PointSet (PointSet) as a GSLIB file 

(FileName) with a caption (Caption): 
 

SaveGSLIBPointSet(PointSet, FileName, Caption) 

 

4.1.4. Moving Average Calculation  

The Moving Average function returns a NumPy-array which can be used in 
Local Varying Mean algorithms (SIS LVM, SGS LVM, LVM Kriging). 

To calculate a moving average array MACube on the defined (Mask = 1) cells 
of the NumPy-array Cube, you should use the MovingAverage3D function: 

 

 

MACube = MovingAverage3D((Cube, Mask), Radiuses, undefined_value, 

MaskCalcFunction) 

where: 
- Radiuses is a Python tuple with radiuses for moving average calculation; 
- undefined_value – this value will be set in MACube cells with insufficient 

points for moving average calculation; 
- MaskCalcFunction is a pointer to a function that creates a moving average 

template: 
 - GetCubicalMask – for a cubical moving average template; 
 - GetEllipseMask – for an ellipsoid moving average template; 
 
Example: 

 
size_prop = [166, 141, 20] 

undef = -99 

 

prop = load_cont_property("DATA.INC", undef, size_prop) 

 

Radiuses = (10, 10, 10) 

 



 

MACube = MovingAverage3DP(prop, Radiuses, undef, GetCubicalMask) 



 

 4.2. geo_bsd.cvariogram 

The geo_bsd.cvariogram sub-module contains some sample variogram 
calculation functions. 

To calculate a sample variogram, you must first set up the variogram 
parameters by creating a VariogramSearchTemplate object: 

 
var_templ_obj = VariogramSearchTemplate( 

lag_width, 

lag_separation, 

tol_distance, 

num_lags, 

first_lag_distance, 

ellipsoid) 

 
where: 
- lag_width is the variogram lag width; 
- lag_separation is the distance between lags centers; 
- tol_distance is the search cone height; 
- num_lags is the number of lags; 
- first_lag_distance is the distance between the cone node and the first 

lag center; 
- ellipsoid is the ellipsoid which defines the search cube parameters; it 

must be an Ellipsoid class object (see below). 
 
An Ellipsoid class object can be created as shown below: 
 

ellipsoid_obj = Ellipsoid(R1, R2, R3, azimuth, dip, rotation) 

 
where: 
- R1, R2, R3 are the ellipsoid radiuses (x,y,z); 
- azimuth, dip, rotation are the corresponding rotation angles. 
 
To calculate a sample variogram using the parameters defined in the 

VariogramSearchTemplate object, you can use the following functions: 
 
1. To calculate a sample variogram on an HPGL property: 
 

(lags_borders, variogram) = CalcVariograms(templ, hard_data, 

percent=100) 

 

2. To calculate a sample variogram on a GSLIB PointSet: 
 



 

(lags_borders, variogram) = CalcVariogramsFromPointSet(templ, 

point_set) 

 
where:  
- lags_borders are the lag borders for sample variogram values (X); 
- variogram are the sample variogram values (Y); 
- templ is the VariogramSearchTemplate object; 
- hard_data is the HPGL property; 
- percent is the part of the dataset (in percent), on which the sample 

variogram will be calculated (points will be selected by a random process); 
this can be used to speed up calculation on large datasets. 

 

Example: 

 
lag_width = 1 

lag_separation = 1 

tol_distance = 1 

num_lags = 50 

first_lag_distance = 0 

r1, r2, r3 = 1, 1, 1 

a1, a2, a3 = 0, 0, 0 

 

prop_shape = (166, 141, 20) 

prop = load_cont_property('fixed/BIG.INC', -99, prop_shape) 

 

lags, variograms = cv.CalcVariograms( 

    cv.VariogramSearchTemplate( 

        lag_width, 

        lag_separation, 

        tol_distance, 

        num_lags, 

        first_lag_distance, 

        cv.Ellipsoid( 

            r1, r2, r3, 

            a1, a2, a3)), 

    prop)  
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Modification History 

 
HPGL 0.9.9 - 18/02/2010 

 
 Now HPGL use CLAPACK solvers instead of internal ones, which means 

great performance boost on large scale linear equation solving problems. 

 
HPGL 0.9.7 Xmas Edition - 31/12/2009 
 

 Main module name changed from geo to geo_bsd 
 

 cvariogram module introduced for sample variogram calculation 
 

 CdfData class introduced for CDF definition in SGS algorithms 
 

 ContProperty and IndProperty classes for properties introduced (instead 
of a Python tuple) 

 
 boost::python deprecated & replaced by CTypes for C-bindings (Python 

version >= 2.5 supported) 
 

 CovarianceModel class introduced as the generic covariance model for all 
algorithms 

 
 Project refactored to incorporate new building systems for Windows and 

Linux 
 

 .deb packages now packed in the ‘true’ Debian way 

 
HPGL 0.9.6 - 14/09/2009 

 
 Added sub-module geo.routines 

 
 Module geo refactored (many changes in algorithms interfaces) 

 
 SGS LVM: algorithm changed, now LVM-means preserved correctly 

 
 IK/SIS: Median-algorithms now used by default for 2-indicator properties 

 



 

 SGS: bug fixed for the cdf_data case 
 

 Random path bug fixed (used to be incorrect for small grids of 100 or less 
cells) 
 

 Project compilation scheme changed 
 

 Packages for Python 2.5 & 2.6 (Windows + Linux) are now built 
simultaneously 

 
 FORTRAN order in arrays now optional (arrays will be converted to 

FORTRAN order automatically inside algorithms) 
 

 New GSLIB file read/write and VPC calculation functions – very fast now 
 

 Sill > Nugget check added 
 

HPGL 0.9.5 - 22/05/2009 
 
 Properties are now NumPy-array compatible 

 
 GSLIB file support added 

 
 Non-conditional Simulation support added 

 
 Almost all algorithms (except Ordinary Kriging) now use a Cholesky 

decomposition solver, performance improved up to twice as fast 
 

 boost::python now statically linked 
 

HPGL 0.9.4 - 12/05/2009 
 
 GSTL deprecated 

 Library now covered by the BSD License 

 Nugget and anisotropy variograms added 

 New algorithm structure 

 Modeling regions in simulation algorithms 

 



 

HPGL 0.9.3 - 06/04/2009 
 
 First open release 

  



 

License 

 
HPGL is distributed under terms of BSD license. 
Full text of BSD license is presented below. 
 
Copyright (c) 2010, HPGL Team 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without modification, are 

permitted provided that the following conditions are met: 

 

    * Redistributions of source code must retain the above copyright notice, this 

list of conditions and the following disclaimer. 

    * Redistributions in binary form must reproduce the above copyright notice, this 

list of conditions and the following disclaimer in the documentation and/or other 

materials provided with the distribution. 

    * Neither the name of the HPGL nor the names of its contributors may be used to 

endorse or promote products derived from this software without specific prior written 

permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY 

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 

SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGE. 


