

HPGL
High
Performance
Geostatistics
Library

version 0.9.9 BSD

User Guide

2010

Contents

1. Understanding the Basics ... 4

1.1. Software Description ... 4

1.2. System Requirements and Installation.. 5

1.2.1. Microsoft Windows ... 5

1.2.2. Ubuntu/Debian Linux (.deb-based) .. 5

1.2.3. Other Systems... 5

1.3. Components Used ... 5

2. Core Features .. 6

2.1. Library Import ... 6

2.2. Creating an IJK Grid ... 6

2.3. Properties ... 6

2.4. Eclipse Property File Format... 7

2.4.1. Reading Eclipse Property files .. 8

2.4.2. Writing Eclipse Property Files .. 9

2.5. GSLIB Files ... 9

2.5.1. Reading from GSLIB Files ... 9

2.5.2. Writing to GSLIB Files .. 10

2.5.3. Writing to GSLIB Files (С++) ... 10

2.6. Covariance (Variogram) Object .. 11

2.7. Threading Parallel Algorithms .. 11

2.8. Releasing Data from Memory... 11

3. Using the Algorithms .. 12

3.1. Simple Kriging.. 12

3.2. Ordinary Kriging .. 12

3.3. Indicator Kriging .. 13

3.4. LVM Kriging (Local Varying Mean) .. 14

3.5. Sequential Indicator Simulation (SIS) .. 15

3.6. Sequential Gaussian Simulation (SGS)... 16

4. Sub-Modules ... 19

4.1. geo_bsd.routines... 19

4.1.1. Mean calculation... 19

4.1.2. VPC (Vertical Proportion Curve) Calculation 19

4.1.3. GSLIB File Routines .. 20

4.1.4. Moving Average Calculation .. 21

4.2. geo_bsd.cvariogram .. 23

Contact the Authors... 25

Modification History .. 26

License .. 29

1. Understanding the Basics

1.1. Software Description

HPGL is a C++ / Python library that implements geostatistical algorithms. The

algorithms are implemented via scripts in the Python language, thus enabling
creation of the required geostatistical modeling scenarios.

Version 0.9.9 BSD implements the following algorithms:

 Simple Kriging (SK)

 Ordinary Kriging (OK)
 Indicator Kriging (IK)

 Local Varying Mean Kriging (LVM Kriging)

 Simple CoKriging (Markov Models 1 & 2)

 Sequential Indicator Simulation (SIS)
 Correlogram Local Varying Mean SIS (CLVM SIS)

 Local Varying Mean SIS (LVM SIS)

 Sequential Gaussian Simulation (SGS)

 Local Varying Mean SGS (LVM SGS)

 Truncated Gaussian Simulation (GTSIM)*
 * in the Python script collection

The attributes are set across an ijk space, meaning that all parameters (e.g.

variogram or ellipsoid radiuses) are set in grid cells.
Kriging algorithms supports parallel processing, see 2.7 to learn how to set up

the number of threads.

The following data import/export formats are currently supported:
 - Eclipse Property text file;
 - GSLIB property text file.

 HPGL properties are stored as NumPy Arrays (see 2.3 for details).

1.2. System Requirements and Installation

Using HPGL requires a Windows (32-bit) or Linux (32/64-bit) operating system

with installed Python version 2.5 or higher, as well as NumPy/SciPy python packages
installed (for the corresponding Python version).

1.2.1. Microsoft Windows

MS Windows installation requires the presence of Microsoft Visual C++ 2005
SP1 Redistributable Package (it can be downloaded from
http://www.microsoft.com/downloads/details.aspx?familyid=2051A0C1-

C9B5-4B0A-A8F5-770A549FD78C&displaylang=en).
WARNING! The Redistributable Package must be of revision date 7/28/2009

or later (after the ATL security update).
HPGL installation is performed by running the file

HPGL-X.Y.Z-BSD-[py2.5/py2.6].win32.exe (for the corresponding Python
version).

1.2.2. Ubuntu/Debian Linux (.deb-based)

Install package hpgl_X.Y.Z-BSD-[x32/x64].deb (corresponding to the
operation system’s architecture). Using HPGL also requires the Boost Libraries to be
installed.

1.2.3. Other Systems

So far HPGL has binary packages only for Ubuntu Linux and Windows.
However, if you want to compile the project under another Linux system (or to
create a package), feel free to contact the authors.

1.3. Components Used

 TNT (Template Numerical Toolkit) – (can be downloaded from
http://math.nist.gov/tnt/overview.html);

 Boost Libraries (i.e. boost::python).

http://www.microsoft.com/downloads/details.aspx?familyid=2051A0C1-C9B5-4B0A-A8F5-770A549FD78C&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=2051A0C1-C9B5-4B0A-A8F5-770A549FD78C&displaylang=en
http://math.nist.gov/tnt/overview.html

2. Core Features

2.1. Library Import

Every HPGL Python script must be started with the import geo_bsd module
command:

from geo_bsd import *

HPGL also includes two sub-modules geo_bsd.routines with additional
property-related algorithms: VPC (Vertical Proportion Curve) and moving average
calculations, GSLIB file format support etc., and geo_bsd.cvariogram for sample
variogram calculation.

If you want to use these sub-modules, the Python script must be started with:

from geo_bsd.routines import *

from geo_bsd.cvariogram import *

For detailed information about sub-modules, see Ch. 4.

2.2. Creating an IJK Grid

Every HPGL geostatistical algorithm requires a Cartesian Grid object. An IJK
(Cartesian) grid can be created with the SugarboxGrid() function:

grid_object = SugarboxGrid(I, J, K)

This command will create a grid object of dimensions i, j, k.

Example:

my_griddy = SugarboxGrid(42, 42, 10)

2.3. Properties

All HPGL properties must be objects of the two classes: ContProperty (for
continuous data) or IndProperty (for categorical data).

a) Continuous property:

cont_property = ContProperty(array_prop, array_mask)

where
- array_prop is a 3D NumPy-array (float32 type) with property data;

- array_mask is a 3D NumPy-array (uint8 type), which defines
array_prop points with a value (array_informed = 1), and array_prop
points without value (array_informed = 0).

b) Categorical property:

ind_property = IndProperty(array_prop, array_mask,

indicators_number)

where
- array_prop is a 3D NumPy-array (uint8 type) with categorical property

data. Categorical indicators must be named from 0 up to max (0,1,2,3…);
- array_mask is a 3D NumPy-array (uint8 type), which defines array_prop

points with a value (array_informed = 1), and array_prop points without
value (array_informed = 0).

- indicators_number is the number of categorical indicators in
array_prop.

Note: 2D or 1D properties must be created as 3D ones:

a = zeros((10,10, 1)) # 2D 10x10 property

a = zeros((10, 1, 1)) # 1D 10 property

WARNING! NumPy arrays must use the FORTRAN data storage order. This can

be achieved with the following:

- creating a new array:

a = array([], order=’F’)

- changing an existing non-Fortran order array:

a = require(a, requirements=’F’)

If an HPGL input array will be non-FORTRAN, it will be converted to the

FORTRAN type automatically; you need to keep in mind that all resulted properties
will be returned as FORTRAN order arrays.

More information about FORTRAN order arrays can be addressed here:
http://www.ibiblio.org/pub/languages/fortran/ch2-6.html.

2.4. Eclipse Property File Format

HPGL supports reading from and writing to Eclipse property files.

http://www.ibiblio.org/pub/languages/fortran/ch2-6.html

Eclipse property files must be in the following format:

-- comment (will be ignored)

PROPERTY_NAME

0

1

0

...

/

Values will be read in the order defined in the file.

2.4.1. Reading Eclipse Property files

Reading properties from Eclipse property text files is implemented in two
functions:

 load_ind_property() – for indicator values;
 load_cont_property() – for continuous values.

prop = load_cont_property(filename, undefined_value, size)

prop = load_ind_property(filename, undefined_value,

[indicators], size)

These commands will create an object (prop) of the corresponding class
(ContProperty or IndProperty) that will contain a property from the file
filename. Cells with values equal to undefined_value will be considered empty
(undefined), and array_informed for these cells will be set to 0.

Direct access to data and mask NumPy arrays can be achieved by indexing the
property object: prop[0] will be a pointer to the data array, and prop[1] will be a
pointer to the mask array.

The [indicators] argument in the load_ind_property function is a
Python tuple with indicator codes contained in the file.

The last argument (size) is a Python tuple with the grid size in cells i,j,k:

size = (i,j,k)

WARNING! After importing data from the file, the indicators will be

renumbered to 0,1,2… like in indicators.

Example:

size = (50, 50, 100)

cont_property = load_cont_property("d:\CONT.INC", -99, size)

ind_property = load_ind_property("d:\IND.INC", -99, [0,1], size)

2.4.2. Writing Eclipse Property Files

Properties can be written to an Eclipse property file using the
write_property() function:

write_property(prop_object, filename, prop_name, undefined_value,

indicator_values=[])

This command will create a text file with name filename, which will contain
the property prop_name extracted from the object prop_object. Empty cells (if
any) will be written as undefined_value. For indicator properties, the indicator
values are defined in indicator_values. If indicator_values is not defined, the
indicators in the saved property will be 0,1,2,…

Example:

write_property(cont_prop, "CON_PROP.INC", "PROPCON", -99)

write_property(i_prop, "INDP.INC", "PROP_IND", -99, [0,1])

2.5. GSLIB Files

A detailed description of the GSLIB file format can be found at
http://www.gslib.com/gslib_help/format.html. All GSLIB-related functions are
included in the geo_bsd.routines sub-module, so you need to import it before
using GSLIB files:

from geo_bsd.routines import *

2.5.1. Reading from GSLIB Files

Reading properties from a GSLIB file is implemented in the LoadGslibFile()
function:

dict_gslib = LoadGslibFile(filename)

where dict_gslib is a Python dictionary with data from file filename (the
dictionary items will be NumPy-array properties from the file).

A property with the name property_1 can be accessed using the following

syntax:

dict_gslib[“property_1”]

http://www.gslib.com/gslib_help/format.html

2.5.2. Writing to GSLIB Files

An HPGL property can be written into a GSLIB file by the SaveGSLIBCubes()
function:

SaveGSLIBCubes(dict_gslib, filename, caption, Format = "%d")

where filename is the GSLIB file name;
dict_gslib is the Python dictionary with the properties in the form of
NumPy-arrays;
caption is the caption of the GSLIB file.

A detailed description of Python dictionaries can be found in Python

documentation, for example, here:
http://docs.python.org/tutorial/datastructures.html#dictionaries

2.5.3. Writing to GSLIB Files (С++)

There is another GSLIB property write function called
write_gslib_property() present in HPGL. The parameters of this function are
identical to those of the write_property()function for Eclipse property files:

write_gslib_property(prop_object, filename, prop_name,

undefined_value, indicator_values=[])

This command will create a file named filename which will contain the
property named prop_name extracted from the object prop_object. Empty cells (if
any) will be written as undefined_value. For indicator property, indicator values
are defined by indicator_values. If indicator_values is not defined, the
indicators in the saved property will be written as 0,1,2,…

This function is much faster than SaveGSLIBCubes(), but it can be used to
store only one property at a time. Multiple properties defined as dictionaries can be
stored using the SaveGSLIBCubes() function.

Example:

write_gslib_property(cont_prop, "CON_PROP.INC", "PROPCON", -99)

write_gslib_property(i_prop, "INDP.INC", "PROP_IND", -99, [0,1])

http://docs.python.org/tutorial/datastructures.html%23dictionaries

2.6. Covariance (Variogram) Object

All HPGL geostatistical algorithms use a unified type of the covariance
(variogram) function. A covariance (variogram) object must be created as
CovarianceModel:

cov = CovarianceModel(

 type = 0,

 ranges=(0,0,0),

 angles=(0,0,0),

 sill=1.0,

 nugget=0.0)

where
type is the variogram type:

0 – spherical, 1 – exponential, 2 – Gaussian;
ranges are the variogram ellipsoid ranges (0⁰, 90⁰, vertical);
angles are the variogram ellipsoid angles;
sill is the sill value of the variogram;
nugget is the nugget-effect value.

Covariance model objects can be used in all HPGL geostatistical algorithms.

2.7. Threading Parallel Algorithms

The number of threads for parallel algorithms (so far, only for Kriging) can be
set/modified with the set_thread_num() function:

set_thread_num(th_num)

where th_num is the number of threads to be allocated.

Note: A ‘rule of thumb’ for threading is to set the number corresponding to

the number of CPUs (or cores) operating on the system.

To get the current number of threads, calle the function get_thread_num:

current_th_num = get_thread_num()

2.8. Releasing Data from Memory

When a property is no longer needed, it should be deleted to free system
memory. This is done by the del() command defined as

del(prop_object)

3. Using the Algorithms

3.1. Simple Kriging

Simple Kriging is implemented in the function simple_kriging():

def simple_kriging(

 prop, # property with initial values (hard data)

 grid, # the grid in which SK is performed

 radiuses, # search ellipsoid radiuses

 max_neighbours, # maximum interpolation points

 cov_model, # covariance (variogram) object (see 2.6)

mean=None # mean value

 # if None, it will be calculated automatically

 # from the initial data

)

Example:

size = (55, 52, 100)

grid = SugarboxGrid(55, 52, 100)

prop = load_cont_property("HARD_DATA.INC", -99, size)

cov_krig = CovarianceModel(type=1, ranges=(10,10,10), sill=1)

prop_result = simple_kriging(prop, grid,

 radiuses = (20, 20, 20),

 max_neighbours = 12,

 cov_model = cov_krig,

 mean = 1.6)

write_property(prop_result, "SK.INC", "SK_RESULT", -99)

del(prop_result)

3.2. Ordinary Kriging

Ordinary Kriging is implemented in the function ordinary_kriging:

def ordinary_kriging(

 prop, # property with initial values (hard data)

 grid, # the grid in which OK is performed

 radiuses, # search ellipsoid radiuses

 max_neighbours, # maximum interpolation points

 cov_model, # covariance (variogram) object (see 2.6)

)

Example:

size = (55, 52, 100)

grid = SugarboxGrid(55, 52, 100)

prop = load_cont_property("HARD_DATA.INC", -99, size)

cov_krig = CovarianceModel(type=1, ranges=(10,10,10), sill=1)

prop_result = ordinary_kriging(prop, grid,

 radiuses = (20, 20, 20),

 max_neighbours = 12,

 cov_model = cov_krig)

write_property(prop_result, "R_OK.INC", "OK_RESULT", -99)

del(prop_result)

3.3. Indicator Kriging

Before calling the indicator_kriging function, a list of parameters must be
created as shown below:

data = [

 # Variogram parameters for 0 indicator:

 {
 “cov_model”: cov0 # covariance (variogram) object (see 2.6)

 "radiuses": (SR1, SR2, SR3), # search ellipsoid radiuses

 "max_neighbours": neigh_count, # maximum interpolation points
 },

 # Variogram parameters for 1 indicator:

 {
 “cov_model”: cov1 # covariance (variogram) object (see 2.6)

 "radiuses": (SR1, SR2, SR3), # search ellipsoid radiuses

 "max_neighbours": neigh_count, # maximum interpolation points
 }
]

A variogram is required for each indicator variable.

Please notice: If only two indicators are used, Median IK will be performed.

The parameters in the structure being assigned, indicator_kriging can
now be called as follows:

def indicator_kriging
(

ik_prop, # algorithm parameters structure

grid, # the grid on which Indicator Kriging is performed

data, # property with initial values (hard data)

 marginal_probs # Python tuple with marginal probabilities for each indicator

)

Example:

size = (55, 52, 100)

grid = SugarboxGrid(55, 52, 100)

prop = load_ind_property("HARDDATA.INC", -99, [0,1], size)

cov1 = CovarianceModel(type=1, ranges=(10,10,10), sill=1)

data = [{

 "cov_model": cov1,

 "radiuses": (20, 20, 20),

 "max_neighbours": 12,

 },

 {

 "cov_model": cov1,

 "radiuses": (20, 20, 20),

 "max_neighbours": 12,

 }]

ik_result = indicator_kriging(prop, grid, data, (0.8, 0.2))

write_property(ik_result, "RESIK.INC", "PROP_IK", -99, [0,1])

3.4. LVM Kriging (Local Varying Mean)

 Kriging with Local Varying Means (LVM) is implemented in the function
lvm_kriging:

def lvm_kriging

(

 prop, # initial property values (hard data)

 grid, # the grid in which lvm kriging is performed

 mean_data, # property with LVM values (must be float32 NumPy array)

 radiuses, # search ellipsoid radiuses

 max_neighbours, # maximum interpolation points

 cov_model # covariance (variogram) object (see 2.6)

)

Example:

grid = SugarboxGrid(55, 52, 100)

size = (55, 52, 100)

mean_data = load_cont_property("cube_local_means.inc", size)[0]

cov1 = CovarianceModel(type=1, ranges=(10,10,10), sill=1)

lvm_prop = load_cont_property("LVM.INC", -99, size)

prop_lvm = lvm_kriging(lvm_prop, grid, mean_data,

 radiuses = (20, 20, 20),

 max_neighbours = 12,

 cov_model = cov1)

write_property(prop_lvm, "lvmresult.inc", "lvm_kriging", -99)

del(mean_data)

del(prop_lvm)

3.5. Sequential Indicator Simulation (SIS)

The SIS parameters structure is identical to Indicator Kriging described above.

The algorithm is executed by the sis_simulation function:

def sis_simulation(

prop, # initial property data (hard data)

grid, # grid on which SIS is performed

data, # algorithm parameters structure

seed, # random seed (a stochastic realization number)

marginal_probs, # if Python tuple with marginal probabilities
for each indicator, SIS will be performed;

if Python tuple with NumPy-arrays (probabilities cubes)
 # SIS LVM will be performed.

use_correlogram = True,

 # Type of LVM SIS (only if mean data defined as
probabilities cubes)

 # True — use Correlogram SIS
 # False — use Classic LVM SIS

mask = None, # modeling region -

in case not all points need to be simulated

mask must be an uint8 NumPy array with
1 (ones) for points to be simulated, and 0 (zeros)

for the ones to leave out

if mask = None, all points will be simulated
)

Please notice: If only two indicators are used, Median SIS will be performed.

Example:

size = (55, 52, 100)

grid = SugarboxGrid(55, 52, 100)

sis_prop = load_ind_property("HARD.INC", -99, [0,1], size)

cov1 = CovarianceModel(type=1, ranges=(10,10,10), sill=1)

sis_data = [{

 "cov_model": cov1,

 "radiuses": (20, 20, 20),

 "max_neighbours": 12,

 },

 {

 "cov_model": cov1,

 "radiuses": (20, 20, 20),

 "max_neighbours": 12,

 }]

sis_result = sis_simulation(sis_prop, grid, sis_data,

seed=3241347)

write_property(sis_result, "RESSIS.INC", "P_SIS", -99, [0,1])

3.6. Sequential Gaussian Simulation (SGS)

SGS is implemented in the function sgs_simulation:

def sgs_simulation(

 prop, # initial property data (hard data)

grid, # grid on which SGS is performed

 radiuses, # search ellipsoid radiuses

 max_neighbours, # maximum interpolation points

 cov_model, # covariance (variogram) object (see 2.6)

seed, # random seed (a stochastic realization number)

kriging_type = “sk”, # Kriging type
 # sk – Simple Kriging
 # ok – Ordinary Kriging
 # ignored for SGS LVM

mean = None, # modeling property mean value
 # if number, SGS will be performed

if float32 NumPy array – SGS LVM will be performed

use_harddata = True,
if False, initial property data will be ignored, and unconditional
SGS with histogram from cdf_data will be performed

cdf_data = None,

 # CdfData class object, which defines CDF used for modeling

 # can be created:

1. by calc_cdf(prop), function, where prop is a NumPy-ndarray

2. as CdfData(values, probs), where values are property cdf values

and probs are the corresponding cumulative probabilities

mask = None, # modeling region -

in case not all points need to be simulated

mask must be an uint8 NumPy array with
1 (ones) for points to be simulated, and 0 (zeros)

for the ones to leave out

if mask = None, all points will be simulated
)

Example:

size = (55, 52, 100)

grid = SugarboxGrid(55, 52, 100)

prop = load_cont_property("SGS_HARD_DATA.INC", -99, size)

cov1 = CovarianceModel(type=1, ranges=(10,10,10), sill=1)

sgs_result = sgs_simulation(prop, grid,

 radiuses = (20,20,20),

 max_neighbours = 12,

 cov_model = cov1,

 seed=3439275)

write_property(sgs_result, "RSGS.INC", "PROP_SGS", -99)

Example(LVM):

grid = SugarboxGrid(55, 52, 100)

size = (55, 52, 100)

prop = load_cont_property("HARD_DATA.INC", -99, size)

mean_data = load_cont_property("MEAN.INC", -99, size)[0]

sgs_lvm_result = sgs_result = sgs_simulation(prop, grid,

 radiuses = (20,20,20),

 max_neighbours = 12,

 cov_model = cov1,

 seed=3439275,

 mean = mean_data)

write_property(sgs_lvm, "SGS_LVM_RESULT.INC", "SGS_LVM", -99)

del(sgs_lvm)

4. Sub-Modules

 4.1. geo_bsd.routines

The geo_bsd.routines sub-module has many additional functions to work
with HPGL properties.

4.1.1. Mean calculation

a) CalcMean – returns the mean value for the NumPy-array Cube calculated
on the defined (Mask = 1) cells:

mean = CalcMean(Cube, Mask)

b) CalcMarginalProbsIndicator – returns a NumPy-array with

proportions (marginal probabilities) of indicators in the array Cube, for
each indicator in Indicators, calculated on the defined (Mask = 1) cells:

MProbs = CalcMarginalProbsIndicator(Cube, Mask, Indicators)

4.1.2. VPC (Vertical Proportion Curve) Calculation

a) CalcVPC – returns a NumPy-array with VPC (Vertical Proportion Curve) –
mean values of vertical slices for the NumPy-array Cube, calculated on the
defined (Mask = 1) cells:

VPC = CalcVPC(Cube, Mask, MarginalMean)

MarginalMean must be the mean value for the property defined in

Cube. This value will be set in VPC for slices without defined (Mask = 1) cells.

b) CalcVPCsIndicator – returns a Python list with NumPy-arrays VPC
(Vertical Proportion Curve) – means of vertical slices for the NumPy-array
Cube for each indicator defined in Indicators, calculated on the defined
(Mask = 1) cells:

Result = CalcVPCsIndicator(Cube, Mask, Indicators,

MarginalProbs)

MarginalProbs must be the means (marginal probabilities) for each of

the indicators. These values will be set in VPC for slices without defined (Mask
= 1) cells.

с) CubeFromVPC – creates a 3D NumPy-array of shape NX, NY, len(VPC),
filled with VPС values for each of the vertical slices.

VPC_Cube = CubeFromVPC(VPC, NX, NY)

VPC_Cube array can be used as mean data for continuous Local Varying Mean
algorithms (SGS LVM, LVM Kriging). This function must be used in couple with
CalcVPC.

d) CubesFromVPCs – creates a Python list with 3D NumPy-arrays shaped as

NX, NY, len(VPC), filled with mean values for each of the vertical slices.

VPC_Cubes = CubesFromVPCs(VPCs, NX, NY)

VPC_Cubes can be used as mean data for indicator algorithms with Local
Varying Mean (SIS LVM). This function must be used in couple with
CalcVPCsIndicator.

4.1.3. GSLIB File Routines

The file reading and writing functions from this sub-module are described in
2.5. Some additional functions which may come in useful to work with GSLIB
files are described below.

a) Cubes2PointSet – converts a dictionary with GSLIB properties into the

GSLIB PointSet format:

PointSets = Cubes2PointSet(CubesDictionary, Mask)

where:
- CubesDictionary is the dictionary with GSLIB properties;
- Mask defined (Mask = 1) / undefined (Mask = 0) is the cell mask array.

b) Cube2PointSet – converts defined (Mask = 1) cells of the NumPy-array
Cube into a GSLIB PointSet:

PointSet = Cube2PointSet(Cube, Mask)

с) PointSet2Cube – converts a GSLIB PointSet into an HPGL property:

Cube, Mask = PointSet2Cube(X, Y, Z, Property, Cube)

where:
- Cube is the NumPy-array for converted points;

- Mask is the NumPy-array which defines the defined (Mask = 1) and
undefined (Mask = 0) cells for Cube;
- X are the X-coordinates for the PointSet’s points;
- Y are the Y-coordinates for the PointSet’s points;
- Z are the Z-coordinates for the PointSet’s points;
- Property is the NumPy-array with the PointSet property values.

Note: Cube must be initialized with the corresponding shape. After execution,

it will be filled with Point Set values.

d) SaveGSLIBPointSet – saves a GSLIB PointSet (PointSet) as a GSLIB file

(FileName) with a caption (Caption):

SaveGSLIBPointSet(PointSet, FileName, Caption)

4.1.4. Moving Average Calculation

The Moving Average function returns a NumPy-array which can be used in
Local Varying Mean algorithms (SIS LVM, SGS LVM, LVM Kriging).

To calculate a moving average array MACube on the defined (Mask = 1) cells
of the NumPy-array Cube, you should use the MovingAverage3D function:

MACube = MovingAverage3D((Cube, Mask), Radiuses, undefined_value,

MaskCalcFunction)

where:
- Radiuses is a Python tuple with radiuses for moving average calculation;
- undefined_value – this value will be set in MACube cells with insufficient

points for moving average calculation;
- MaskCalcFunction is a pointer to a function that creates a moving average

template:
 - GetCubicalMask – for a cubical moving average template;
 - GetEllipseMask – for an ellipsoid moving average template;

Example:

size_prop = [166, 141, 20]

undef = -99

prop = load_cont_property("DATA.INC", undef, size_prop)

Radiuses = (10, 10, 10)

MACube = MovingAverage3DP(prop, Radiuses, undef, GetCubicalMask)

 4.2. geo_bsd.cvariogram

The geo_bsd.cvariogram sub-module contains some sample variogram
calculation functions.

To calculate a sample variogram, you must first set up the variogram
parameters by creating a VariogramSearchTemplate object:

var_templ_obj = VariogramSearchTemplate(

lag_width,

lag_separation,

tol_distance,

num_lags,

first_lag_distance,

ellipsoid)

where:
- lag_width is the variogram lag width;
- lag_separation is the distance between lags centers;
- tol_distance is the search cone height;
- num_lags is the number of lags;
- first_lag_distance is the distance between the cone node and the first

lag center;
- ellipsoid is the ellipsoid which defines the search cube parameters; it

must be an Ellipsoid class object (see below).

An Ellipsoid class object can be created as shown below:

ellipsoid_obj = Ellipsoid(R1, R2, R3, azimuth, dip, rotation)

where:
- R1, R2, R3 are the ellipsoid radiuses (x,y,z);
- azimuth, dip, rotation are the corresponding rotation angles.

To calculate a sample variogram using the parameters defined in the

VariogramSearchTemplate object, you can use the following functions:

1. To calculate a sample variogram on an HPGL property:

(lags_borders, variogram) = CalcVariograms(templ, hard_data,

percent=100)

2. To calculate a sample variogram on a GSLIB PointSet:

(lags_borders, variogram) = CalcVariogramsFromPointSet(templ,

point_set)

where:
- lags_borders are the lag borders for sample variogram values (X);
- variogram are the sample variogram values (Y);
- templ is the VariogramSearchTemplate object;
- hard_data is the HPGL property;
- percent is the part of the dataset (in percent), on which the sample

variogram will be calculated (points will be selected by a random process);
this can be used to speed up calculation on large datasets.

Example:

lag_width = 1

lag_separation = 1

tol_distance = 1

num_lags = 50

first_lag_distance = 0

r1, r2, r3 = 1, 1, 1

a1, a2, a3 = 0, 0, 0

prop_shape = (166, 141, 20)

prop = load_cont_property('fixed/BIG.INC', -99, prop_shape)

lags, variograms = cv.CalcVariograms(

 cv.VariogramSearchTemplate(

 lag_width,

 lag_separation,

 tol_distance,

 num_lags,

 first_lag_distance,

 cv.Ellipsoid(

 r1, r2, r3,

 a1, a2, a3)),

 prop)

Contact the Authors

Vladimir Savichev

Andrey Bezrukov

Artur Mukharlyamov

Konstantin Barsky

Dina Nasibullina

Feel free to ask questions at: hpgl-support-eng@lists.sourceforge.net

mailto:hpgl-support-eng@?lists.sourceforge.net

Modification History

HPGL 0.9.9 - 18/02/2010

 Now HPGL use CLAPACK solvers instead of internal ones, which means

great performance boost on large scale linear equation solving problems.

HPGL 0.9.7 Xmas Edition - 31/12/2009

 Main module name changed from geo to geo_bsd

 cvariogram module introduced for sample variogram calculation

 CdfData class introduced for CDF definition in SGS algorithms

 ContProperty and IndProperty classes for properties introduced (instead
of a Python tuple)

 boost::python deprecated & replaced by CTypes for C-bindings (Python

version >= 2.5 supported)

 CovarianceModel class introduced as the generic covariance model for all
algorithms

 Project refactored to incorporate new building systems for Windows and

Linux

 .deb packages now packed in the ‘true’ Debian way

HPGL 0.9.6 - 14/09/2009

 Added sub-module geo.routines

 Module geo refactored (many changes in algorithms interfaces)

 SGS LVM: algorithm changed, now LVM-means preserved correctly

 IK/SIS: Median-algorithms now used by default for 2-indicator properties

 SGS: bug fixed for the cdf_data case

 Random path bug fixed (used to be incorrect for small grids of 100 or less
cells)

 Project compilation scheme changed

 Packages for Python 2.5 & 2.6 (Windows + Linux) are now built
simultaneously

 FORTRAN order in arrays now optional (arrays will be converted to

FORTRAN order automatically inside algorithms)

 New GSLIB file read/write and VPC calculation functions – very fast now

 Sill > Nugget check added

HPGL 0.9.5 - 22/05/2009

 Properties are now NumPy-array compatible

 GSLIB file support added

 Non-conditional Simulation support added

 Almost all algorithms (except Ordinary Kriging) now use a Cholesky

decomposition solver, performance improved up to twice as fast

 boost::python now statically linked

HPGL 0.9.4 - 12/05/2009

 GSTL deprecated

 Library now covered by the BSD License

 Nugget and anisotropy variograms added

 New algorithm structure

 Modeling regions in simulation algorithms

HPGL 0.9.3 - 06/04/2009

 First open release

License

HPGL is distributed under terms of BSD license.
Full text of BSD license is presented below.

Copyright (c) 2010, HPGL Team

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

 * Neither the name of the HPGL nor the names of its contributors may be used to

endorse or promote products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

